Dynamic optimization of interval narrowing algorithms
نویسندگان
چکیده
منابع مشابه
Interval optimization of dynamic response for structures with interval parameters
This paper presents an interval optimization method for the dynamic response of structures with interval parameters. The matrices of structures with interval parameters are given. Combining the interval extension of function with the perturbation theory of dynamic response, the method for interval dynamic response analysis is derived. The interval optimization problem is transformed into a corr...
متن کاملDynamic algorithms for monotonic interval scheduling problem
Imagine a number of processes all need to use a particular resource for a period of time. Each process i specifies a starting time s(i) and a finishing time f(i) between which it needs to continuously occupy the resource. The resource cannot be shared by two processes at any instance. One is required to design a scheduler which chooses a subset of these processes so that 1) there is no time con...
متن کاملA conservative scheme for parallel interval narrowing
An efficient parallel interval narrowing algorithm for solving numerical problems is designed, implemented and tested. Differences with the corresponding sequential algorithm are clearly stated. The algorithm’s performance is analyzed in the Bulk-Synchronous Parallel (BSP) cost model which suggests speed-ups on highbandwidth architectures. Experimental results on a massively parallel machine Cr...
متن کاملdynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولTransfer Learning based Dynamic Multiobjective Optimization Algorithms
One of the major distinguishing features of the dynamic multiobjective optimization problems (DMOPs) is the optimization objectives will change over time, thus tracking the varying Pareto-optimal front becomes a challenge. One of the promising solutions is reusing the “experiences” to construct a prediction model via statistical machine learning approaches. However most of the existing methods ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Logic Programming
سال: 1998
ISSN: 0743-1066
DOI: 10.1016/s0743-1066(98)10007-9